Publications (Since 2000)

2022
Understanding the ā€œAnti-Catalystā€ Effect with Added CoOx Water Oxidation Catalyst in Dye-Sensitized Photoelectrolysis Cells: Carbon Impurities in Nanostructured SnO2 Are the Culprit. Jewell, C. F.; Subramanian, A.; Nam, C-Y..;Finke, R. G. ACS Appl. Mater. Interfaces, 2022, 22, 25326ā€“25336.

2021
Ultrathin alumina passivation for improved photoelectrochemical water oxidation catalysis of tin oxide sensitized by a phosphonate-functionalized perylene diimide first without, and then with, CoOy. Jewell, C. F.; Subramanian, A.; Nam, C-Y..;Finke, R. G. Sustainable Energy Fuels, 2021, 5, 5257-5269.

Estimating reaction parameters in mechanism-enabled population balance models of nanoparticle size distributions: A Bayesian inverse problem approach. Long, D. K.; Bangerth, W.; Handwerk, D.W.; Whitehead, C. B.; Shipman, P. D.; Finke, R. G. Journal of Computational Chemistry, 2021, 43, 43-56.

Pseudoelementary Steps: A Key Concept and Tool for Studying the Kinetics and Mechanisms of Complex Chemical Systems. Watzky, M.; Finke, R. G. Journal of Physical Chemistry A, 2021,Ā 125, 51.

Carbon-Electrode-Mediated Electrochemical Synthesis of Hypervalent Iodine Reagents Using Water as the O-Atom Source. Folkman, S. J.; Finke, R. G.; Galan-Mascaros, J. R.; Miyake, G. ACS Sustainable Chemistry and Engineering. 2021.Ā 9. 31.

Nanoparticle Formation Kinetics, Mechanisms, and Accurate Rate Constants: Examination of a Second-Generation Ir(0) n Particle Formation System by Five Monitoring Methods Plus Initial Mechanism-Enabled Population Balance Modeling. Whitehead, C. B.;Ā  Handwerk, D. R.; Shipman, P. D.; Finke, R. G. The Journal of Physical Chemistry C. 2021.Ā 125. 24.

Particle formation mechanisms supported by in situ synchrotron XAFS and SAXS studies: a review of metal, metal-oxide, semiconductor and selected other nanoparticle formation reactions. Whitehead, C. B.; Finke, R. G.;Ā Materials Advances, 2021.Ā 2. 20.

2020
“Burst Nucleation” vs Autocatalytic, “Burst” Growth in Near-Monodisperse Particle-Formation Reactions. Whitehead, C. B.; Watzky, M. A.; Finke, R. G. J. Phys. Chem. C 2020, 124, 24543-24554.

LaMer’s 1950 Model of Particle Formation: A Review and Critical Analysis of Its Classical Nucleation and Fluctuation Theory Basis, of Competing Models and Mechanisms for Phase-Changes and Particle Formation, and then of Its Application to Silver Halide, Semiconductor, Metal, and Metal-Oxide Nanoparticles. Whitehead, C. B.; Ɩzkar, S.; Finke, R. G. Mater. Adv. 2020, In Press.

Copper Metal-Organic Framework Surface Catalysis: Catalyst Poisoning, IR Spectroscopic, and Kinetic Evidence Addressing the Nature and Number of the Catalytically Active Sites En Route to Improved Applications. Tuttle, R. R.; Folkman, S. J.; Rubin, H. N.; Finke, R. G.; Reynolds, M. M. ACS Appl. Mater. Interfaces 2020, 12, 39043-39055.

Response to “Particle Size Is a Primary Determinant for Sigmoidal Kinetics of Nanoparticle Formation: A “Disproof” of the Finke-Watzky (F-W) Nanoparticle Nucleation and Growth Mechanism”. Finke, R. G.; Watzky, M. A.; Whitehead, C. B.Ā Chem. Mater. 2020,Ā 32, 3657-3672.

Dust Effects On Ir(0)n Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions: Analysis by and Insights from Mechanism-Enabled Population Balance Modeling. Handwerk, D. R.; Shipman, P. D.; Ɩzkar, S.; Finke, R. G. LangmuirĀ 2020, 36, 1496-1506.

Particle Size Distributions via Mechanism-Enabled Population Balance Modeling. Handwerk, D. R.; Shipman, P. D.; Whitehead, C. B.; Ɩzkar, S.; Finke, R. G. J. Phys. Chem. C 2020, 124, 4852-4880.

2019
Mechanism-Enabled Population Balance Modeling of Particle Formation en Route to Particle Average Size and Size Distribution Understanding and Control. Handwek, D. R.; Shipman, P. D.; Whitehead, C. B.; Ɩzkar, S.; Finke, R. G. J. Am. Chem. Soc.Ā 2019,Ā 141, 15827-15839.

LaMer’s 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model’s Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data. Whitehead, C. B.; Ɩzkar, S.; Finke, R. G. Chem. Mater.Ā 2019,Ā 31, 7116-7132.

Nanoparticle Formation Kinetics and Mechanistic Studies Important to Mechanism-Based Particle-Size Control: Evidence for Ligand-Based Slowing of the Autocatalytic Surface Growth. Ɩzkar, S.; Finke, R. G. J. Phys. Chem. C 2019, 123, 14047-14057.

Copper ion vs copper metal-organic framework catalyzed NO release from bioavailable S-Nitrosoglutathione en route to biomedical applications: Direct 1H NMR monitoring in water allowing identification of the distinct, true reaction stoichiometries and thiol dependencies. Tuttle, R. R.; Rubin, H. N.; Rithner, C. D.; Finke, R. G.; Reynolds, M. M. J. Inorg. Biochem. 2019, 199, 110760.

Nucleation Kinetics and Molecular Mechanism in Transition-Metal Nanoparticle Formation: The Intriguing, Informative Case of a Bimetallic Precursor, {[(1,5-COD)IrIā€¢HPO4]2}2-. Whitehead, C. B.; Finke, R. G. Chem. Mater. 2019, 31, 2848-2862.

2018
“Weakly Ligated, Labile Ligand” Nanoparticles: The Case of Ir(0)nā€¢(H+Cl)m. Mondloch, J. E.; Ɩzkar, S.; Finke, R. G. ACS Omega 2018, 3, 14538-14550.

Gold Nanoparticle Formation Kinetics and Mechanism: A Critical Analysis of the “Redox Crystallization” Mechanism. Watzky, M. A.; Finke, R. G. ACS Omega 2018, 3, 1555-1563.

Electrochemically Driven Water-Oxidation Catalysis Beginning with Six Exemplary Cobalt Polyoxometalates: Is It Molecular, Homogeneous Catalysis or Electrode-Bound, Heterogeneous CoOx Catalysis? Folkman, S. J.; Soriano-Lopez, J.; GalĆ”n-MascarĆ³s, J. R.; Finke, R. G. J. Am. Chem. Soc. 2018, 140, 12040-12055.

Alcohol Solvent Effects in the Synthesis of Co3O4 Metal-Oxide Nanoparticles: Disproof of a Surface-Ligand Thermodynamic Effect en Route to Alternative Kinetic and Thermodynamic Explanations. Folkman, S. J.; Zhou, M.; Nicki, M.; Finke, R. G. Inorg. Chem. 2018, 57, 1517-1526.

2017
Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and Re-Interpretation. Ɩzkar, S.; Finke, R. G. J. Phys. Chem. C 2017, 121, 27643-27654.

Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Case of the Precatalyst Co4V2W18O6810-. Folkman, S. J.; Finke, R. G. ACS Catal. 2017, 56, 7-16.

Catalyst Sintering Kinetics Data: Is There a Minimal Chemical Mechanism Underlying Kinetics Previously Fit by Empirical Power-Law Expressions–and if So, What Are Its Implications?. Finney, E. E.; Finke, R. G. Ind. Eng. Chem. Res. 2017, 56, 10271-10286.

A Classic Azo-Dye Agglomeration System: Evidence for Slow, Continuous Nucleation, Autocatalytic Agglomerative Growth, Plus the Effects of Dust Removal by Microfiltration on the Kinetics. Ɩzkar, S.; Finke, R. G. J. Phys. Chem. A 2017, 121, 7071-7078.

Water-oxidation photoanodes using organic light-harvesting materials: a review. Kirner, J. T.; Finke, R. G. J. Mater. Chem. A 2017, 9, 19560-19592.

Sensitization of Nanocrystalline Metal Oxides with a Phosphonate-Functionalized Perylene Diimide for Photoelectrochemical Water Oxidation with a CoOx Catalyst. Kirner, J. T.; Finke, R. G. ACS Appl. Mater. Interfaces 2017, 9, 27625-27637.

Dust Effects on Nucleation Kinetics and Nanoparticle Product Size Distributions: Illustrative Case Study of a Prototype Ir(0)n Transition-Metal Nanoparticle Formation System. Ɩzkar, S.; Finke, R. G. Langmuir 2017, 33, 6550-6562.

Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2xā€¢P2W15Nb3O62}6- in Ir(0)n Nanoparticle Formation From [(1,5-COD)IrIā€¢P2W15Nb3O62]8- Plus Dihydrogen. Ɩzkar, S.; Finke, R. G. J. Am. Chem. Soc. 2017, 139, 5444-5457.

Sigmoidal Nucleation and Growth Curves Across Nature Fit by the Finke-Watzky Model of Slow Continuous Nucleation and Autocatalytic Growth: Explicit Formulas for the Lag and Growth Times Plus Other Key Insights. Bentea, L.; Watzky, M. A.; Finke, R. G. J.
Phys. Chem. C
2017, 121, 5302-5312.

2016
The Cobalt Polyoxometalate Co4V2W18O6810āˆ’: A Critical Investigation of Its Synthesis, Purity, and Observed 51V Quadrupolar NMR. Folkman, S. J.; Kirner, J. T.; Finke, R. G. Inorg. Chem. 2016, 55, 5343-5355.

Syntheses of Heterogeneous Ir(0)~600-900/Ī³-Al2O3 From One-Pot vs Isolated Preparations of the Precatalyst Ir(1,5-COD)Cl/Ī³-Al2O3: Discovery of Two, Competing, Trace ā€œEthyl Acetate Effectsā€ on the Key, Nucleation Step and Resultant Product. Kent, P. D.; Mondloch, J. E.; Finke, R. G., ACS Catalysis, 2016, 6, 5449-5461.

Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac)2 as a Preferred Precursor, [Bu4N]2HPO4 Stabilizer, Plus the Stoichiometry, Kinetics, and Minimal, 4-Step Mechanism of the Palladium Nanoparticle Formation and Subsequent Agglomeration Reactions. Ɩzkar, S.; Finke, R., Langmuir, 2016, 32, 3699-3716.

2015

Determining the True Catalyst Derived from the [RhCp*Cl2]2Precatalyst System: Is it Single-Metal RhCp*-Based, or a Sub-nanometer Rh4Cluster-Based, Cyclohexene Hydrogenation Catalysis at Room Temperature and Mild Pressures? Bayram, E.; Linehan, J. C.; Fulton, J. L.; Szymczak, N. K.; Finke, R. G., ACS Catalysis, 2015, 5, 3876-3886.

Agglomerative Sintering of an Atomically Dispersed Ir1/Zeolite Y Catalyst: Compelling Evidence Against Ostwald Ripening But for Bimolecular and Autocatalytic Agglomeration Catalyst Sintering Steps. Bayram, E.; Lu, J.; Aydin, C.; Browning, N. D.; Ɩzkar, S.; Finney, E. E.; Gates, B. C.; Finke, R. G., ACS Catalysis, 2015, 5, 3514-3527.

Unintuitive Inverse Dependence of the Apparent Turnover Frequency,Ā  TOFapp, on Precatalyst Concentration: A Quantitative Explanation in the Case of Ziegler-type Nanoparticle Catalysts Made from [(1,5ā€‘COD)Ir(Āµ-O2C8H15)]2and AlEt3. Crooks, A.; Yih, K.-H.; Li, L.; Yang, J. C.; Ɩzkar, S.; Finke, R. G., ACS Catalysis, 2015, 5, 3342-3353.

The Story of a Mechanism-Based Solution to an Irreproducible Synthesis Resulting in an Unexpected Closed-System Requirement for the LiBEt3H-Based Reduction: the Case of the Novel Subnanometer Cluster, [Ir(1,5ā€‘COD)(Āµā€‘H)]4, and the Resulting Improved, Independently Repeatable, Reliable Synthesis. Laxson, W. W.; Ɩzkar, S.; Folkman, S.; Finke, R. G., Inorg. Chim. Acta, 2015, 432, 250-257.

2014

Nucleation is Second Order: An Apparent Kinetically Effective Nucleus of Two for Ir(0)n Nanoparticle Formation From [(1,5-COD)IrIā€¢P2W15Nb3O62]8- Plus Hydrogen. Laxson, W. W.; Finke, R. G., J. Am. Chem. Soc., 2014, 136, 17601-17615.

The Tri-Niobium, Wells-Dawson Type Polyoxoanion, [(n C4H9)4N]9P2W15Nb3O62: Improvements in the Synthesis, Its Reliability, the Purity of the Product and the Detailed Synthetic Procedure. Laxson, W. W.; Ɩzkar, S.; Finke, R. G., Inorg. Chem., 2014, 53, 2666-2676.

Visible-light assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoOx cocatalyst. Kirner, J. T.; Stracke, J. J.; Gregg , B. A.; Finke, R. G., ACS Applied Materials & Interfaces, 2014, 6, 13367-13377 (ā€œACS Editorsā€™ Choice Article Selectionā€; selected as Cover Art; also most read distinction).

Distinguishing Homogeneous from Heterogeneous Water Oxidation Catalysis When Beginning with Polyoxometalates. Stracke, J. J.; Finke, R. G. ACS Catalysis, 2014, 4, 909-933.

A Four-Step Mechanism for the Formation of Supported-Nanoparticle Heterogeneous Catalysts in Contact with Solution: The Conversion of Ir(1,5-COD)Cl/Ī³-Al2O3 to Ir(0)~170/Ī³-Al2O3. Kent, P. D.; Mondloch, J. E.; Finke, R. G. J. Am. Chem. Soc. 2014, 136, 1930-1941.

Water Oxidation Catalysis Beginning with Co4(H2O)2(PW9O34)10- when Driven by the Chemical Oxidant Ruthenium(III)tris(2,2ā€™-bipyridine): Stoichiometry, Kinetic, and Mechanistic Studies En Route to Identifying the True Catalyst. Stracke, J. J.; Finke, R. G. ACS Catal., 2014, 4, 79-89.

2013

Water oxidation catalysis beginning with 2.5 ĀµM [Co4(H2O)2(PW9O34)2]10-: Investigation of the true electrochemically driven catalyst at ā‰„600 mV overpotential at a glassy carbon electrode:, Stracke, J. J.; Finke, R. G. ACS Catal., 2013, 3, 1209-1219.

Exceptionally Thermally Stable, Hydrocarbon Soluble Ziegler-type Ir(0)n Nanoparticle Catalysts Made from [Ir(1,5-COD)(Āµ-O2C8H15)]2 Plus AlEt3: Tests of Key Hypotheses for Their Unusual Stabilization. Hamdemir, I. K.; Ɩzkar, S.; Finke, R. G, J. Mol. Catal. A, 2013, 378, 333-343.

2012

A Review of the Kinetics and Mechanisms of Formation of Supported-Nanoparticle Heterogeneous Catalysts. Mondloch, J. E.; Bayram, E.; Finke, J. Mol. Catal. A, 2012, 355, 1-38. (ā€œEditorā€™s Choiceā€ selection).

Gold Nanocluster Agglomeration Kinetic Studies: Evidence for Parallel Bimolecular Plus Autocatalytic Agglomeration Pathways as a Mechanistic Alternative to an Avrami-Based Analysis. Shields, S., Buhro, W. E., Finney, E. E.; Finke, R. G., Chem. Mater., 2012, 24, 1718-1725.

Synthesis and Characterization of [(1,5-Cyclooctadiene)Ir(Āµ-H)]4: A Multipurpose, Tetrametallic, Coordinatively Unsaturated Ir4-Based Precatalyst and Synthon. Yih, K.-H.; Hamdemir, Isil K.; Mondloch, J. M.; Bayram, E.; Ɩzkar, S.; Vasic, R.; Frenkel A. I.; Anderson, O.; Finke, R. G. Inorg. Chem., 2012, 51, 3186-3193.

Kinetic Evidence for Bimolecular Nucleation In Supported-Transition-Metal-Nanoparticle Catalyst Formation In Contact With Solution: The Prototype Ir(1,5-COD)Cl/Ī³-Al2O3 to Ir(0)~900/Ī³-Al2O3 System. Mondloch, J. E.; Bayram, E.; Finke, R. G. ACS Catal., 2012, 2, 298-305.

Hydrocarbon-Soluble, Isolable Ziegler-type Ir(0)n Nanoparticle Catalysts Made from [(1,5-COD)Ir(Āµ-O2C8H15)]2 and 2-5 Equivalents of AlEt3: Their High Catalytic Activity, Long Lifetime and AlEt3-Dependent, Exceptional, 200 Ā°C Thermal Stability. Hamdemir, I. K.; Ɩzkar, S.; Yih, K. H.; Mondloch, J. M.; Finke, R. G., ACS Catal., 2012, 2, 632-641.

Quantitative 1,10-Phenanthroline Catalyst-Poisoning Kinetic Studies of Rh(0)n Nanoparticle and Rh4 Cluster Benzene Hydrogenation Catalysts: Estimates of the Poison Kassociation Binding Constants, of the Equivalents of Poison Bound and of the Number of Catalytically Active Sites for Each Catalyst. Bayram, E.; Finke, R. G. ACS Catal., 2012, 2, 1967-1975.

Mononuclear Zeolite-Supported Iridium: Kinetic, Spectroscopic, Electron Microscopic, and Size-Selective Poisoning Evidence for an Atomically Dispersed True Catalyst at 22 Ā°C. Bayram, E.; Lu, J.; Aydin, C.; Uzun, A.; Browning, N. D.; Gates, B. C.; Finke, R. G. ACS Catal., 2012, 2, 1947-1957.

2011

Supported-Nanoparticle Heterogeneous Catalyst Formation in Contact with Solution: Kinetics and Mechanism of the Conversion of Ir(1,5-COD)Cl/Ī³-Al2O3 to Ir(0)~900/Ī³-Al2O3. Mondloch, J. E.; Finke, R. G. J. Am. Chem. Soc, 2011, 133, 7744-7756.

Industrial Ziegler-type Hydrogenation Catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2, and AlEt3: Evidence for Nanoclusters and Sub-Nanocluster or Larger Ziegler-Nanocluster Based Catalysis, Alley, W. M.; Hamdemir, I. K.; Wang, Q.; Frenkel, A.; Li, L.; Yang, J. C.; Menard, L. D.; Nuzzo, R. G.; Ɩzkar, S.; Yih, K. H.; Johnson, K.; Finke, R. G. Langmuir, 2011, 27, 6279-6294.

Improved Syntheses for the Compounds [(1,5-COD)M(Ī¼-O2C8H15)]2 (M is Ir or Rh). Alley, W. M.; Yih, K. H.; Finke, R. G. Organometallics, 2011, 30, 5068-5070.

Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: Identification of heterogeneous CoOx as the dominant catalyst. Stracke, J. J.; Finke, R. G. J. Am. Chem. Soc. 2011, 133, 14872-14875.

Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl2]2? In Operando XAFS, Kinetic and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis. Bayram, E.; Linehan, J. C.; Fulton, J. L.; Roberts, J. A.S.; Szymczak, N. K.; Smurthwaite, T. D.; Ɩzkar, S.; Balasubramanian, M.; Finke, R. G., J. Am. Chem. Soc, 2011, 133, 18889-18902.

2010

Reply to the Comment on ā€œFitting and Interpreting Transition-Metal Nanocluster Formation and Other Sigmoidal-Appearing Kinetic Data: A More Thorough Testing of Dispersive Kinetic vs Chemical-Mechanism-Based Equations and Treatments for 4-Step Type Kinetic Dataā€, Finney, E. E.; Finke, R. G. Chem. Mater. 2010, 22, 2687-2688.

Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes. Miyake, G. M.; DiRocco, D. A.; Liu, Q.; Oberg, K. M.; Bayram, E.; Finke, R. G.; Rovis, T.; Chen. E. Y.-X. Macromolecules 2010, 43, 7504-7514.


Iridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)Ir(Ī¼-O2C8H15)]2 and AlEt3: Spectroscopic and Kinetic Evidence for the Irn Species Present and for Nanoparticles as the Fastest Catalyst. Alley, W. M.; Hamdemir, I. K.; Wang, Q.; Frenkel, A. I.; Li, L.; Yang, J. C.; Menard, L. D.; Nuzzo, R. G.; Ozkar, S.; Johnson, K. A.; Finke, R. G. Inorg. Chem. 2010, 49, 8131-8147.

Development Plus Kinetic and Mechanistic Studies of a Prototype Supported-Nanoparticle Heterogeneous Catalyst Formation System in Contact with Solution: Ir(1,5-COD)Cl/Ī³-Al2O3 and Its Reduction by H2 to Ir(0)n/Ī³-Al2O3. Mondloch, J. E.; Finke, R. G. Journal of the American Chemical Society 2010, 132, 9701-9714.


In Situ Formed ā€œWeakly Ligated/Labile Ligandā€ Iridium(0) Nanoparticles and Aggregates as Catalysts for the Complete Hydrogenation of Neat Benzene at Room Temperature and Mild Pressures. Bayram, E.; Zahmakiran, M.; Ozkar, S.; Finke, R. G. Langmuir 2010, 26(14), 12455-12464.


Ziegler-Type Hydrogenation Catalysts Made from Group 8-10 Transition Metal Precatalysts and AlR3 Cocatalysts: A critical Review of the Literature. Alley, W. M.; Hamdemir, I. K.; Johnson, K. A.; Finke, R. G. J. Mol. Catal. A-Chemical 2010, 315, (1), 1-27.


2009


Model Ziegler-Type Hydrogenation Catalyst Precursors, [(1,5-COD)M(Ī¼-O2C8H15)]2 (M = Ir and Rh): Synthesis, Characterization, and Demonstration of Catalytic Activity En Route to Identifying the True Industrial Hydrogenation Catalysts. Alley, W. M.; Girard, C. W.; Ozkar, S.; Finke, R. G. Inorg. Chem. 2009; 48, (3), 1114-1121.


Fitting and Interpreting Transition-Metal Nanocluster Formation and Other Sigmoidal-Appearing Kinetic Data: A More Thorough Testing of Dispersive Kinetic vs Chemical-Mechanism-Based Equations and Treatments for 4-Step Type Kinetic Data. Finney, E. E.; Finke, R. G. Chemistry of Materials 2009, 21 (19), 4468-4479.


Also see: Reply to Comment on ā€œFitting and Interpreting Transition-Metal Nanocluster Formation and Other Sigmoidal-Appearing Kinetic Data: A More Thorough Testing of Dispersive Kinetic vs Chemical-Mechanism-Based Equations and Treatments for 4-Step Type Kinetic Dataā€ Finney, E. E.; Finke, R. G. Chemistry of Materials, 2010, 22, 2687-2688.


Is There a Minimal Chemical Mechanism Underlying Classical Avrami-Erofe’ev Treatments of Phase-Transformation Kinetic Data? Finney, E. E.; Finke, R. G. Chemistry of Materials 2009, 21 (19), 4692-4705.


Ranking the Lacunary (Bu4N)9{H(alpha(2)-P2W17O61} Polyoxometalate’s Stabilizing Ability for Ir(0)n Nanocluster Formation and Stabilization Using the Five-Criteria Method Plus Necessary Control Experiments. Graham, C. R.; Ott, L. S.; Finke, R. G. Langmuir 2009, 25 (3), 1327-1336.


Monitoring Supported-Nanocluster Heterogeneous Catalyst Formation: Product and Kinetic Evidence for a 2-Step, Nucleation and Autocatalytic Growth Mechanism of Pt(0)n Formation from H2PtCl6 on Al2O3 or TiO2. Mondloch, J. E.; Yan, X. H.; Finke, R. G. Journal of the American Chemical Society 2009, 131 (18), 6389-6396.


Reinvestigation of a Ru2-Incorporated Polyoxometalate Dioxygenase Precatalyst, ” WZnRu2III(H2O)(OH)(ZnW9O34)211-“: Evidence For Marginal, ā‰¤ 0.2 Equivalents of Ru Incorporation Plus Faster Catalysis by Physical Mixtures of [RuII(DMSO)4Cl2] and the Parent Polyoxometalate WZn3(H2O)2(ZnW9O34)212-. Morris, A. M.; Anderson, O. P.; Finke, R. G. Inorganic Chemistry 2009, 48 (10), 4411-4420.


Ī±-Synuclein aggregation variable temperature and variable pH kinetic data: A re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth. Morris, A. M.; Finke, R. G. Biophysical Chemistry 2009, 140 (1-3), 9-15.


Synthesis and Characterization of VV(3,6-DBSQ)(3,6-DBCat)2, a d0 Metal Complex with Dioxygenase Catalytic Activity. Morris, A. M.; Pierpont, C. G.; Finke, R. G. Inorganic Chemistry 2009, 48 (8), 3496-3498.


Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. Morris, A. M.; Watzky, M. A.; Finke, R. G. Biochimica Et Biophysica Acta-Proteins and Proteomics 2009, 1794 (3), 375-397.


2008


Nanocluster nucleation and growth kinetic and mechanistic studies: A review emphasizing transition-metal nanoclusters. Finney, E. E.; Finke, R. G. Journal of Colloid and Interface Science 2008, 317 (2), 351-374.


The four-step, double-autocatalytic mechanism for transition-metal nanocluster nucleation, growth, and then agglomeration: Metal, ligand, concentration, temperature, and solvent dependency studies. Finney, E. E.; Finke, R. G. Chemistry of Materials 2008, 20 (5), 1956-1970.


The classic Wells-Dawson polyoxometalate, K6[Ī±-P2W18O62]ā€¢14H2O. Answering an 88 year-old question: What is its preferred, optimum synthesis? Graham, C. R.; Finke, R. G. Inorganic Chemistry 2008, 47 (9), 3679-3686.


Fitting neurological protein aggregation kinetic data via a 2-step, Minimal/”Ockham’s Razor” model: The Finke-Watzky mechanism of nucleation followed by autocatalytic surface growth. Morris, A. M.; Watzky, M. A.; Agar, J. N.; Finke, R. G. Biochemistry 2008, 47 (8), 2413-2427.


Supersensitivity of transition-metal nanoparticle formation to initial precursor concentration and reaction temperature: Understanding its origins. Ott, L. S.; Finke, R. G. Journal of Nanoscience and Nanotechnology 2008, 8 (3), 1551-1556.


Transition-metal nanocluster stabilization versus agglomeration fundamental studies: Measurement of the two types of rate constants for agglomeration plus their activation parameters under catalytic conditions. Ott, L. S.; Finke, R. G. Chemistry of Materials 2008, 20 (7), 2592-2601.


Platinum-catalyzed phenyl and methyl group transfer from tin to iridium: Evidence for an autocatalytic reaction pathway with an unusual preference for methyl transfer. Smith, S. E.; Sasaki, J. M.; Bergman, R. G.; Mondloch, J. E.; Finke, R. G. Journal of the American Chemical Society 2008, 130 (6), 1839-1841.


Transition-metal nanocluster size vs formation time and the catalytically effective nucleus number: A mechanism-based treatment. Watzky, M. A.; Finney, E. E.; Finke, R. G. Journal of the American Chemical Society 2008, 130 (36), 11959-11969.


Fitting yeast and mammalian prion aggregation kinetic data with the Finke-Watzky two-step model of nucleation and autocatalytic growth. Watzky, M. A.; Morris, A. M.; Ross, E. D.; Finke, R. G. Biochemistry 2008, 47 (40), 10790-10800.


2007


Evidence that imidazolium-based ionic ligands can be metal(0)/nanocluster catalyst poisons in at least the test case of iridium(0)-catalyzed acetone hydrogenation. Ott, L. S.; Campbell, S.; Seddon, K. R.; Finke, R. G. Inorganic Chemistry 2007, 46 (24), 10335-10344.


Nanocluster formation and stabilization fundamental studies: Ranking the nanocluster stabilizing ability of halides. Ott, L. S.; Cline, M. L.; Finke, R. G. Journal of Nanoscience and Nanotechnology 2007, 7 (7), 2400-2410.


Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers. Ott, L. S.; Finke, R. G. Coordination Chemistry Reviews 2007, 251 (9-10), 1075-1100.


2006


Is it homogeneous Pt(II) or heterogeneous Pt(0)n catalysis? Evidence that Pt(1,5-COD)Cl2 and Pt(1.5-COD)(CH3)2 plus H2 form heterogeneous, nanocluster plus bulk-metal Pt(0) hydrogenation catalysts. Finney, E. E.; Finke, R. G., Inorganica Chimica Acta 2006, 359 (9), 2879-2887.


Nanocluster formation and stabilization fundamental studies: Investigating “solvent-only” stabilization en route to discovering stabilization by the traditionally weakly coordinating anion BF4- plus high dielectric constant solvents. Ott, L. S.; Finke, R. G. Inorganic Chemistry 2006, 45 (20), 8382-8393.


A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants. Ott, L. S.; Hornstein, B. J.; Finke, R. G. Langmuir 2006, 22 (22), 9357-9367.


Synthesis and characterization of tetrahedral Ru3O clusters with intrinsic framework chirality: A chiral probe of the intact cluster catalysis concept. Vieille-Petit, L.; Suss-Fink, G.; Therrien, B.; Ward, T. R.; Stoeckli-Evans, H.; Labat, G.; Karmazin-Brelot, L.; Neels, A.; Burgi, T.; Finke, R. G.; Hagen, C. M. Organometallics 2006, 25 (2), 554-554.


Analysis of nanoparticle Transmission Electron Microscopy data using a public-domain image-processing program, Image. Woehrle, G. H.; Hutchison, J. E.; Ozkar, S.; Finke, R. G. Turkish Journal of Chemistry 2006, 30 (1), 1-13.


2005


A mechanism for transition-metal nanoparticle self-assembly. Besson, C.; Finney, E. E.; Finke, R. G. Journal of the American Chemical Society 2005, 127 (22), 8179-8184.


Nanocluster nucleation, growth, and then agglomeration kinetic and mechanistic studies: A more general, four-step mechanism involving double autocatalysis. Besson, C.; Finney, E. E.; Finke, R. G. Chemistry of Materials 2005, 17 (20), 4925-4938.


Supramolecular triruthenium cluster-based benzene hydrogenation catalysis: Fact or fiction? Hagen, C. M.; Vieille-Petit, L.; Laurenczy, G.; Suss-Fink, G.; Finke, R. G. Organometallics 2005, 24 (8), 1819-1831.


Is it homogeneous or heterogeneous catalysis? Compelling evidence for both types of catalysts derived from [Rh(Ī·5-C5Me5)Cl2]2 as a function of temperature and hydrogen pressure. Hagen, C. M.; Widegren, J. A.; Maitlis, P. M.; Finke, R. G. Journal of the American Chemical Society 2005, 127 (12), 4423-4432.


Nanoclusters in ionic liquids: Evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR. Ott, L. S.; Cline, M. L.; Deetlefs, M.; Seddon, K. R.; Finke, R. G. Journal of the American Chemical Society 2005, 127 (16), 5758-5759.


Iridium(0) nanocluster, acid-assisted catalysis of neat acetone hydrogenation at room temperature: Exceptional activity, catalyst lifetime, and selectivity at complete conversion. Ozkar, S.; Finke, R. G. Journal of the American Chemical Society 2005, 127 (13), 4800-4808.

Synthesis and characterization of tetrahedral RU3O clusters with intrinsic framework chirality: A chiral probe of the intact cluster catalysis Concept. Vieille-Petit, L.; Suss-Fink, G.; Therrien, B.; Ward, T. R.; Stoeckli-Evans, H.; Labat, G.; Karmazin-Brelot, L.; Neels, A.; Burgi, T.; Finke, R. G.; Hagen, C. M. Organometallics 2005, 24 (25), 6104-6119.


The water-soluble cluster cation H3Ru3(C6H6)(C6Me6)2(O)]+: Improved synthesis, aerobic oxidation, electrochemical properties and ligand exchange studies. Vieille-Petit, L.; Tschan, M. J. L.; Suss-Fink, G.; Laurenczy, G.; Hagen, C. M.; Finke, R. G.; Geneste, F.; Moinet, C. Polyhedron 2005, 24 (15), 1961-1967.


Is it true dioxygenase or classic autoxidation catalysis? Re-investigation of a claimed dioxygenase catalyst based on a Ru2-incorporated, polyoxometalate precatalyst. Yin, C. X.; Finke, R. G. Inorganic Chemistry 2005, 44 (12), 4175-4188.


Kinetic and mechanistic studies of vanadium-based, extended catalytic lifetime catechol dioxygenases. Yin, C. X.; Finke, R. G. Journal of the American Chemical Society 2005, 127 (40), 13988-13996.

Vanadium-based, extended catalytic lifetime catechol dioxygenases: Evidence for a common catalyst. Yin, C. X.; Finke, R. G. Journal of the American Chemical Society 2005, 127 (25), 9003-9013.

Autoxidation-product-initiated dioxygenases: Vanadium-based, record catalytic lifetime catechol dioxygenase catalysis. Yin, C. X.; Sasaki, Y.; Finke, R. G. Inorganic Chemistry 2005, 44 (23), 8521-8530.


2004


Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C-3 symmetry, lattice size-matching binding model. Finke, R. G.; Ozkar, S. Coordination Chemistry Reviews 2004, 248 (1-2), 135-146.


Transition-metal nanocluster kinetic and mechanistic studies emphasizing nanocluster agglomeration: Demonstration of a kinetic method that allows monitoring of all three phases of nanocluster formation and aging. Hornstein, B. J.; Finke, R. G. Chemistry of Materials 2004, 16 (1), 139-150.


Transition-metal nanocluster kinetic and mechanistic studies emphasizing nanocluster agglomeration: Demonstration of a kinetic method that allows monitoring of all three phases of nanocluster formation and aging. Hornstein, B. J.; Finke, R. G. Chemistry of Materials 2004, 16 (20), 3972-3972.


The hydrogenphosphate complex of (1,5-cyclooctadiene)iridium(I), {Bu4N(1,5-COD)Irā€¢HPO4}n: Synthesis, spectroscopic characterization, and ES-MS of a new, preferred precursor to HPO42- and Bu4N+ stabilized Ir(0)n nanoclusters. Ozkar, S.; Finke, R. G. Journal of Organometallic Chemistry 2004, 689 (3), 493-501.


2003


The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. Doll, K. M.; Bender, B. R.; Finke, R. G. Journal of the American Chemical Society 2003, 125 (36), 10877-10884.


A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: The beta-neopentylcobalamin system combined with prior adocobalamin data. Doll, K. M.; Finke, R. G. Inorganic Chemistry 2003, 42 (16), 4849-4856.


Cobalamin-dependent methionine synthase: Probing the role of the axial base in catalysis of methyl transfer between methyltetrahydrofolate and exogenous Cob(I)alamin or Cob(I)inamide. Dorweiler, J. S.; Finke, R. G.; Matthews, R. G. Biochemistry 2003, 42 (49), 14653-14662.


Transition-metal nanocluster catalysts: Scaled-up synthesis, characterization, storage conditions, stability, and catalytic activity before and after storage of polyoxoanion- and tetrabutylammonium-stabilized Ir(0) nanoclusters. Hornstein, B. J.; Finke, R. G. Chemistry of Materials 2003, 15 (4), 899-909.


Transition-metal nanocluster stabilization fundamental studies: Hydrogen phosphate as a simple, effective, readily available, robust, and previously unappreciated stabilizer for well-formed, isolable, and redissolvable Ir(0) and other transition-metal nanoclusters. Ozkar, S.; Finke, R. G. Langmuir 2003, 19 (15), 6247-6260.


Expanded product, plus kinetic and mechanistic, studies of polyoxoanion-based cyclohexene oxidation catalysis: the detection of similar to 70 products at higher conversion leading to a simple, product-based test for the presence of olefin autoxidation. Weiner, H.; Trovarelli, A.; Finke, R. G. Journal of Molecular Catalysis a-Chemical 2003, 191 (2), 217-252.


Polyoxoanion-supported catalysis: evidence for a P2W15Nb3O629–supported iridium cyclohexene oxidation catalyst starting from [n-Bu4N]5Na3(1,5-COD)Irā€¢P2W15Nb3O62. Weiner, H.; Trovarelli, A.; Finke, R. G. Journal of Molecular Catalysis a-Chemical 2003, 191 (2), 253-279.


Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(Ī·6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation. Widegren, J. A.; Bennett, M. A.; Finke, R. G. Journal of the American Chemical Society 2003, 125 (34), 10301-10310.


A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts. Widegren, J. A.; Finke, R. G. Journal of Molecular Catalysis a-Chemical 2003, 191 (2), 187-207.


A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. Widegren, J. A.; Finke, R. G. Journal of Molecular Catalysis a-Chemical 2003, 198 (1-2), 317-341.


2002


The synthesis and characterization of 8-methoxy-5 ‘-deoxyadenosylcobalamin: a coenzyme B-12 analog which, following Co-C bond homolysis, avoids cyclization of the 8-methoxy-5 ‘-deoxyadenosyl radical. Doll, K. M.; Fleming, P. E.; Finke, R. G. Journal of Inorganic Biochemistry 2002, 91 (2), 388-397.


Providing a chemical basis toward understanding the histidine base-on motif of methylcobalamin-dependent methionine synthase: An improved purification of methylcobinamide, plus thermodynamic studies of methylcobinamide binding exogenous imidazole and pyridine bases. Dorweiler, J. S.; Matthews, R. G.; Finke, R. G. Inorganic Chemistry 2002, 41 (24), 6217-6224.


Nanoclusters in catalysis: A comparison of CS2 catalyst poisoning of polyoxoanion- and tetrabutylammonium-stabilized 40Ā±6 angstrom Rh(0) nanoclusters to 5% Rh/Al2O3, including an analysis of the literature related to the CS2 to metal stoichiometry issue. Hornstein, B. J.; Aiken, J. D.; Finke, R. G. Inorganic Chemistry 2002, 41 (6), 1625-1638.


The lacunary polyoxoanion synthon alpha-P2W15O5612-: An investigation of the key variables in its synthesis plus multiple control reactions leading to a reliable synthesis. Hornstein, B. J.; Finke, R. G. Inorganic Chemistry 2002, 41 (10), 2720-2730.


Nanocluster formation and stabilization fundamental studies. 2. Proton sponge as an effective H+ scavenger and expansion of the anion stabilization ability series. Ozkar, S.; Finke, R. G. Langmuir 2002, 18 (20), 7653-7662.


Nanocluster formation and stabilization fundamental studies: Ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. Ozkar, S.; Finke, R. G. Journal of the American Chemical Society 2002, 124 (20), 5796-5810.


Synthesis of adenosylcobinamide 2-chlorophenyl phosphate, a zwitterionic cobinamide phosphate analog of adenosylcobalamin en route to crystallizable cobinamides. White, W. T.; Finke, R. G. Journal of Inorganic Biochemistry 2002, 91 (2), 371-387.


Anisole hydrogenation with well-characterized polyoxoanion- and tetrabutylammonium-stabilized Rh(0) nanoclusters: Effects of added water and acid, plus enhanced catalytic rate, lifetime, and partial hydrogenation selectivity. Widegren, J. A.; Finke, R. G. Inorganic Chemistry 2002, 41 (6), 1558-1572.


2001


Synthesis, characterization, solution stability, and X-ray crystal structure of the thiolatocobalamin gamma-glutamylcysteinylcobalamin, a dipeptide analogue of glutathionylcobalamin: Insights into the enhanced Co-S bond stability of the natural product glutathionylcobalamin. Suto, R. K.; Brasch, N. E.; Anderson, O. P.; Finke, R. G. Inorganic Chemistry 2001, 40 (12), 2686-2692.


Additional investigations of a new kinetic method to follow transition-metal nanocluster formation, including the discovery of heterolytic hydrogen activation in nanocluster nucleation reactions. Widegren, J. A.; Aiken, J. D.; Ozkar, S.; Finke, R. G. Chemistry of Materials 2001, 13 (2), 312-324.


2000


Synthesis and characterization of the tetrameric, tri-titanium(IV)-substituted Wells-Dawson-substructure polyoxotungstate, (P2W15Ti3O60.5)436- : the significance of ultracentrifugation molecular weight measurements in detecting aggregated, anhydride forms of polyoxoanions. Nomiya, K.; Arai, Y.; Shimizu, Y.; Takahashi, M.; Takayama, T.; Weiner, H.; Nagata, T.; Widegren, J. A.; Finke, R. G., Inorganica Chimica Acta 2000, 300-302, 285-304.


Hydrogen abstraction from thiols by adenosyl radicals: chemical precedent for thiyl radical formation, the first catalytic step in ribonucleoside triphosphate reductase from Lactobacillus leichmannii. Sirovatka, J. M.; Finke, R. G. Journal of Inorganic Biochemistry 2000, 78 (2), 149-160.


Molecular mechanics studies of coenzyme B-12 complexes with constrained Co-N(axial-base) bond lengths: introduction of the universal force field (UFF) to coenzyme B-12 chemistry and its use to probe the plausibility of an axial-base-induced, ground-state corrin butterfly conformational steric effect. Sirovatka, J. M.; Rappe, A. K.; Finke, R. G. Inorganica Chimica Acta 2000, 300, 545-555.


Improved synthesis and crystal structure of tetrakis(acetonitrile)(eta(4)-1,5-cyclooctadiene)ruthenium(II) bis tetrafluoroborate(1-). Widegren, J. A.; Weiner, H.; Miller, S. M.; Finke, R. G., Journal of Organometallic Chemistry 2000, 610 (1-2), 112-117.

Comments are closed.